Omega-3 vetzuren in kanker: inzicht in het werkingsmechanisme in preklinische kankermodellen
22 januari 2019 

Omega-3 vetzuren in kanker: inzicht in het werkingsmechanisme in preklinische kankermodellen

Wereldwijd neemt de incidentie van kanker toe. Verschillende milieu- en genetische factoren zijn predisponerend voor kankerpatiënten. Meerderheid van deze factoren resulteert in opregulering van pro-overlevingspaden, neerwaartse regulatie van tumorsuppressoren en chronische ontsteking. De verhouding van w-6 (omega 6)/ w-3 (omega 3) meervoudig-onverzadigde vetzuren (PUFA's) speelt een zeer cruciale rol in de initiatie en progressie van kanker. Een lage w-6 / w-3 PUFA-verhouding is gunstig gebleken bij het beheer van de kenmerken van kanker. Enorme gegevens van kankercellijnen en in-vivo-kankermodellen hebben inzicht gegeven in de mechanismen die ten grondslag liggen aan de antikankereffecten van w-3 PUFA's. Hier bespraken we belangrijke mogelijke mechanismen voor gunstige effecten van w-3 PUFA's, zoals blijkt uit de preklinische in vitro kankercellijnmodellen en in vivo modellen. Niet geoxideerde omega 3 vetzuren bevatten veel EPA en DHA. Het grootste deel van de commercieel geproduceerde visolie is geoxideerd. Om wettelijke redenen mag ik het merk van een goede visolie niet noemen. In een persoonlijk gesprek mag dat natuurlijk wel. Referenties: Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. J Lipids. 2013;2013 (Article ID 261247).Google Scholar Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425.CrossRefPubMedGoogle Scholar Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.CrossRefPubMedPubMedCentralGoogle Scholar Nathalie V, Lajoie-Mazenc I, Auge N, Suc I, Frisach MF, et al. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ Res. 1999;85:892–9.Google Scholar Ries A, Trottenberg P, Elsner F. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med. 2012;26:294–304.CrossRefPubMedGoogle Scholar Giessman H, Johnson JI, Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res. 2010;316:1365–73.CrossRefGoogle Scholar Hanahan D, Weinberg RA. The hallmarks of cancer review. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar Signori C, El-Bayoumy K, Russo J, Thompson HJ, Richie JP, Hartman TJ, et al. Chemoprevention of breast cancer by fish oil in preclinical models: trials and tribulations. Cancer Res. 2011;71(19):1–6.CrossRefGoogle Scholar Erickson KL, Hubbard NE. Fatty acids and breast cancer: the role of stem cells. Prostaglandins LeukotEssent Fatty Acids. 2010;82:237–41.CrossRefGoogle Scholar Pauwels EK, Kairemo K. Fatty acid facts, part II: role in the prevention of carcinogenesis, or, more fish on the dish? Drug News Perspect. 2008;21:504–10.CrossRefPubMedGoogle Scholar Tapiero H, Ba GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother. 2002;56(5):215–22.CrossRefPubMedGoogle Scholar Elaine HW, Munoz J Jr, Cameron I. Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int. 2002;2:10.CrossRefPubMedPubMedCentralGoogle Scholar Fukui M, Kang KS, Okada K, Zhu BT. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ros accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem. 2012;114(1):192–203.CrossRefGoogle Scholar Epstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A, et al. Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol. 2012;176(3):240–52.CrossRefPubMedPubMedCentralGoogle Scholar Fernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish consumption and cancer risk. Am J Clin Nutr. 1999;70(1):85–90.PubMedGoogle Scholar Caygill CPJ, Hill MJ. Fish n-3 fatty acids and human colorectal and breast cancer. Eur J Cancer Prev. 1995;4:329–32.CrossRefPubMedGoogle Scholar Courtney ED, et al. Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. Int J Colorectal Dis. 2007;22(7):765–76.CrossRefPubMedGoogle Scholar Chang WC, Chapkin RS, Lupton JR. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis. 1997;18(4):721–30.CrossRefPubMedGoogle Scholar Hong MY, Chapkin RS, Barhoumi R, et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23:1919–25.CrossRefPubMedGoogle Scholar Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26(11):1914–21.CrossRefPubMedPubMedCentralGoogle Scholar Shin S, Jing K, Jeong S, Kim N, Song K-S, Heo J-Y, et al. The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-Mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p 53. BioMed Res Int. 2013;2013 (Article ID 568671).Google Scholar Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in European prospective investigation into cancer and nutrition (EPIC): an observational study. Lancet. 2003;361(9368):1496–501.CrossRefPubMedGoogle Scholar Kolar SSN, Barhoumi R, Lupton JR, Chapkin RS. Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 2007;67:5561–8.Google Scholar Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26:1914–21.CrossRefPubMedPubMedCentralGoogle Scholar Nutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. 2002;277:20301–8.CrossRefPubMedGoogle Scholar Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 1999;18(22):6349–61.CrossRefPubMedPubMedCentralGoogle Scholar Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.CrossRefPubMedGoogle Scholar Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.Google Scholar Mantovani A, Allavena P, Sica A, Balkwill F. Cancer related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle Scholar Griennikov SI, Greten FR, Karin M. immunity inflammation and cancer. Cell. 2010;140(6):883–99.CrossRefGoogle Scholar Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020–6.CrossRefPubMedGoogle Scholar Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11.CrossRefPubMedPubMedCentralGoogle Scholar Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47(2):147–55.CrossRefPubMedGoogle Scholar Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;2(5):443–63.CrossRefPubMedPubMedCentralGoogle Scholar Wahli W, et al. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23(7):351–63.Google Scholar Rogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah SM. Docosahexaenoic acid alters epidermal growth factor receptor related signaling by disrupting its lipid raft association. Carcinogenesis. 2010;31(9):1523–30.CrossRefPubMedGoogle Scholar Karmali RA, Reichel P, Cohen LA, Terano T, Hirai A, Tamura Y, et al. The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res. 1987;7:1173–80.PubMedGoogle Scholar Galli C, Calder PC. Effects of fat and fatty acids intake on inflammatory and immune responses. A critical review. Ann Nutr Metab. 2009;55:123–39.CrossRefPubMedGoogle Scholar Fradet V, Cheng I, Casey G, Witte JS. Dietary omega3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res. 2009;15(7):2559–66.CrossRefPubMedPubMedCentralGoogle Scholar Wang D, DuBois RN. The role of the PGE2–aromatase pathway in obesity-associated breast inflammation. Cancer Discov. 2012;2(4):308–10.CrossRefPubMedGoogle Scholar Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen. 2001;480–481:243–68.Google Scholar Brodie MH, Lu Q, Long BJ, Fulton A, Chen T, Macpherson N, et al. Aromatase and COX-2 expression in human breast cancers. J Steroid Biochem Mol Biol. 2001;79(1–5):41–7.CrossRefPubMedGoogle Scholar Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett. 1999;140(1–2):27–35.CrossRefPubMedGoogle Scholar Bhat H. Estrogen’s role in cancer. Columbia Univ Health Sci. 2003;2(10).Google Scholar Liu J, Ma DWL. The Role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients. 2014;6(11):5184–223.Google Scholar Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 2003;63:972–9.PubMedGoogle Scholar Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. Endocrinol Metab Clin. 2010;39:401–18.CrossRefGoogle Scholar Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, et al. Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J. 2010;24(3):906–15.CrossRefPubMedPubMedCentralGoogle Scholar Narayanan NK, Narayanan BA, Reddy BS. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. Int J Oncol. 2005;26(3):785–92.PubMedGoogle Scholar Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefPubMedGoogle Scholar Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol. 2010;6:433–41.CrossRefPubMedPubMedCentralGoogle Scholar Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin sensitizing effect. Cell. 2010;142(5):687–98.CrossRefPubMedPubMedCentralGoogle Scholar Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther. 2015;352:380–94.CrossRefPubMedPubMedCentralGoogle Scholar Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and pro-resolving lipid mediators. Annu Rev Pathol. 2008;3:279–312.CrossRefPubMedPubMedCentralGoogle Scholar Lee HJ, Park MK, Lee EJ, Lee CH. Resolvin D1 inhibits TGF-β1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int J Biochem Cell Biol. 2013;45(12):2801–7.Google Scholar Hutchinson JM, Volpato M, Loadman P, Nicolaou A, Hull M. Neoplasia and cancer pathogenesis PWE-163 Chemr23 and BLT1 receptor expression in colorectal cancer. Gut. 2013;62:A196–7.CrossRefGoogle Scholar Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61(1):135–49.CrossRefPubMedGoogle Scholar Calder PC, Yaqoob P. Lipid rafts—composition, characterization, and controversies. J Nutr. 2007;137(3):545–7 (American Society for Nutrition).PubMedGoogle Scholar Anchisi L, Dessi S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Frontiers. 2012;3 (Article 486).Google Scholar Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B. Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol. 2010;36:737–42.CrossRefPubMedGoogle Scholar Hawk ET, Viner JL, Dannenberg A, DuBois RN. COX-2 in cancer—a player that’s defining the rules. J Natl Cancer Inst. 2002;94:545–6.CrossRefPubMedGoogle Scholar McCormick DL, Rao KV, Steele VE, Lubet RA, Kelloff GJ, Bosland MC. Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer Res. 1999;59:521–4.PubMedGoogle Scholar Rao KV, Johnson WD, Bosland MC, Lubet RA, Steele VE, Kelloff GJ, et al. Chemoprevention of rat prostate carcinogenesis by early and delayed administration of dehydroepiandrosterone. Cancer Res. 1999;59:3084–9 (1999).PubMedGoogle Scholar Swamy MV, Cooma I, Patlolla JM, Simi B, Reddy BS, Rao CV. Modulation of cyclooxygenase-2 activities by the combined action of celecoxib and decosahexaenoic acid: novel strategies for colon cancer prevention and treatment. Mol Cancer Ther. 2004;3:215–21.PubMedGoogle Scholar Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, et al. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer. 2005;117:340–8.CrossRefPubMedGoogle Scholar Flock MR, Harris WS, Kris-Etherton PM. Long-chain omega-3 fatty acids: time to establish a dietary reference intake. Nutr Rev. 2013;71(10):692–707.CrossRefPubMedGoogle Scholar Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr. 2007;548–53.Google Scholar Corsetto PA, GigliolaMontorfano SZ, Jovenitti IE, Cremona A, Berra B, et al. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis. 2011;10:73.CrossRefPubMedPubMedCentralGoogle Scholar Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One. 2010;5(4):e10296.Google Scholar Mobraten K, Haug TM, Kleiveland CR, Lea T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101.CrossRefPubMedPubMedCentralGoogle Scholar Rahman MM, Veigas M, Williams PJ, Fernandes G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat. 2013;141(3). doi: 10.1007/s10549-013-2703-y. Calviello G, Palozza P, Di Nicuolo F, Maggiano N, Bartoli GM. n–3 PUFA dietary supplementation inhibits proliferation and store-operated calcium influx in thymoma cells growing in Balb/c mice. J Lipid Res. 2000;41:182–8.PubMedGoogle Scholar Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004;24(6):1369–83.PubMedGoogle Scholar Elaine Hardman W. Omega-3 fatty acids to augment cancer therapy. american society for nutritional sciences. Int Res Conf Food Nutr Cancer. 2002;132:3508S–12S.Google Scholar Baracos VE, Mazurak VC, Ma DWL. n-3 polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev. 2004;17:177–92.CrossRefPubMedGoogle Scholar Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–406.CrossRefPubMedGoogle Scholar Spencer L, Mann C, Metcalfe M, Webb MB, Pollard C, Spencer D, et al. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer. 2009;45:2077–86.CrossRefPubMedGoogle Scholar Vakkila L. Inflammation and necrosis promote tumor growth. Nat Rev Immunol. 2004;4:641–8.CrossRefPubMedGoogle Scholar Tang D, Kang R, Zeh HJ III, Lotze MT. High-mobility Group box 1 [HMGB1] and cancer. Biochim Biophys Acta. 2010;1799(1–2):131.Google Scholar Joyce JA, Pollard JW, et al. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefPubMedGoogle Scholar Zhang G, Panigrahy D, Mahakiane LM, Yang J, Liu J-Y, Leea KSS, et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. PNAS. 2013;110(16):6530–35.Google Scholar Calviello G, Serini S. Dietary omega-3 polyunsaturated fatty acids and cancer. Diet Cancer Ser. 2010;1.Google Scholar Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res. 1996;2:1751–6.PubMedGoogle Scholar Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti F. Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. BioMed Res Int. 2013;11 pages (ArticleID310186).Google Scholar Li CC, Hou YC, Yeh CL, Yeh SL. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages. PLoS ONE. 2014;9(6):e99630.CrossRefPubMedPubMedCentralGoogle Scholar Cunningham-Rundles S. Is the fatty acid composition of immune cells the key to normal variations in human immune response? Am J Clin Nutr. 2003;77(5):1096–7.PubMedGoogle Scholar Mantovani A. Macrophages, neutrophils, and cancer: a double edged sword. New J Sci. 2014;2014:14 pages (Article ID 271940).Google Scholar Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology; 2013.Google Scholar Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22, 6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev. 2005;14:263–70.CrossRefPubMedGoogle Scholar Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999;104:263–9.CrossRefPubMedPubMedCentralGoogle Scholar Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.PubMedGoogle Scholar Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88:1052–61.PubMedGoogle Scholar Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345–53.PubMedGoogle Scholar Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol. 2005;55:12–20.CrossRefPubMedGoogle Scholar Zhou Z, Zhang L, Mu Q, Lou Y, Gong Z, Shi Y, et al. The effect of combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA expression of apoptosisrelated genes, including the novel gene BCL2L12, in gastric cancer cells. In Vitro Cell Dev Biol Anim. 2009;45:69–74.CrossRefGoogle Scholar Guffy MM, North JA, Burns CP. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984;44:1863–6.PubMedGoogle Scholar Zijlstra JG, de Vries EG, Muskiet FA, Martini IA, Timmer-Bosscha H, Mulder NH. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and -resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines. Int J Cancer. 1987;40:850–6.CrossRefPubMedGoogle Scholar Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P. Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.CrossRefPubMedGoogle Scholar Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J, Maheo K. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med. 2008;44(7):1483–91.CrossRefPubMedGoogle Scholar Gelsomino G, et al. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer. 2013;12:137.CrossRefPubMedPubMedCentralGoogle Scholar Maheo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, et al. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med. 2005;39:742–51.CrossRefPubMedGoogle Scholar Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer. 1997;75:1111–8.CrossRefPubMedPubMedCentralGoogle Scholar Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Natl Cancer Inst. 1998;90:1529–36.CrossRefPubMedGoogle Scholar Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, et al. Cyclo-oxygenase 2, a pharmacological target for the prevention of cancer. Lancet Oncol. 2001;2:544–51.CrossRefPubMedGoogle Scholar Saw CL, Huang Y, Kong AN. Synergistic antiinflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol. 2010;79:421–30.CrossRefPubMedGoogle Scholar Elaine Hardman W, Reddy Avula CP, Fernandes G, Cameron IL. Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res. 2001;7:2041.Google Scholar MacLennan MB, Clarke SE, Perez K, Wood GA, Muller WJ, Kang JX, et al. Mammary tumor development is directly inhibited by lifelong n-3 polyunsaturated fatty acids. J Nutr Biochem. 2013;24(1):388–95.Google Scholar Bron: https://link.springer.com/chapter/10.1007/978-3-319-40458-5_12  
Over de schrijver
Michael van Gils is orthomoleculair therapeut en heeft zijn specialisme in de epi-genetica. Michael heeft veel ervaring met het geven van lezingen op het gebeid van de orthomoleculaire geneeskunde en epi-genetica