Worldwide,
the incidence of cancer is increasing. Several environmental and genetic factors predispose cancer patients. Majority of these factors result in upregulation of pro-survival pathways, downregulation of tumor suppressors and chronic inflammation. The ratio of w-6 (omega 6)/ w-3 (omega 3) polyunsaturated fatty acids (PUFAs) plays a very crucial role in cancer initiation and progression. A low w-6 / w-3 PUFA ratio has been shown to be beneficial in the management of cancer characteristics. Huge data from cancer cell lines and in vivo cancer models have provided insights into the mechanisms underlying the anticancer effects of w-3 PUFAs. Here, we discussed important potential mechanisms for beneficial effects of w-3 PUFAs as revealed by preclinical in vitro cancer cell line models and in vivo models. Non-oxidized omega 3 fatty acids are high in EPA and DHA. Most commercially produced fish oil is oxidized. For legal reasons, I am not allowed to name the brand of a good fish oil. In a personal conversation, of course, you may. References: Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR.
The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. J Lipids. 2013;2013 (Article ID 261247).Google ScholarAggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425.CrossRefPubMedGoogle ScholarAnand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097 116.CrossRefPubMedPubMedCentralGoogle ScholarNathalie V, Lajoie-Mazenc I, Auge N, Suc I, Frisach MF, et al. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ Res. 1999;85:892–9.Google ScholarRies A, Trottenberg P, Elsner F. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med. 2012;26:294–304.CrossRefPubMedGoogle ScholarGiessman H, Johnson JI, Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res. 2010;316:1365 73.CrossRefGoogle ScholarHanahan D, Weinberg RA. The hallmarks of cancer review. Cell. 2000;100:57–70.CrossRefPubMedGoogle ScholarSignori C, El-Bayoumy K, Russo J, Thompson HJ, Richie JP, Hartman TJ, et al. Chemoprevention of breast cancer by fish oil in preclinical models: trials and tribulations. Cancer Res. 2011;71(19):1–6.CrossRefGoogle ScholarErickson KL, Hubbard NE. Fatty acids and breast cancer: the role of stem cells. Prostaglandins LeukotEssent Fatty Acids. 2010;82:237–41.CrossRefGoogle ScholarPauwels EK, Kairemo K. Fatty acid facts, part II: role in the prevention of carcinogenesis, or, more fish on the dish? Drug News Perspect. 2008;21:504–10.CrossRefPubMedGoogle ScholarTapiero H, Ba GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother. 2002;56(5):215 22.CrossRefPubMedGoogle ScholarElaine HW, Munoz J Jr, Cameron I. Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int. 2002;2:10.CrossRefPubMedPubMedCentralGoogle ScholarFukui M, Kang KS, Okada K, Zhu BT. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ros accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem. 2012;114(1):192–203.CrossRefGoogle ScholarEpstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A, et al. Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol. 2012;176(3):240 52.CrossRefPubMedPubMedCentralGoogle ScholarFernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish consumption and cancer risk. Am J Clin Nutr. 1999;70(1):85–90.PubMedGoogle ScholarCaygill CPJ, Hill MJ. Fish n-3 fatty acids and human colorectal and breast cancer. Eur J Cancer Prev. 1995;4:329–32.CrossRefPubMedGoogle ScholarCourtney ED, et al. Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. Int J Colorectal Dis. 2007;22(7):765–76.CrossRefPubMedGoogle ScholarChang WC, Chapkin RS, Lupton JR. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis. 1997;18(4):721–30.CrossRefPubMedGoogle ScholarHong MY, Chapkin RS, Barhoumi R, et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23:1919 25.CrossRefPubMedGoogle ScholarNg Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26(11):1914–21.CrossRefPubMedPubMedCentralGoogle ScholarShin S, Jing K, Jeong S, Kim N, Song K-S, Heo J-Y, et al. The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-Mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p 53. BioMed Res Int. 2013;2013 (Article ID 568671).Google ScholarBingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in European prospective investigation into cancer and nutrition (EPIC): an observational study. Lancet. 2003;361(9368):1496–501.CrossRefPubMedGoogle ScholarKolar SSN, Barhoumi R, Lupton JR, Chapkin RS. Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 2007;67:5561–8.Google ScholarNg Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26:1914 21.CrossRefPubMedPubMedCentralGoogle ScholarNutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. 2002;277:20301–8.CrossRefPubMedGoogle ScholarSzalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP(3) linked mitochondrial calcium signals. EMBO J. 1999;18(22):6349–61.CrossRefPubMedPubMedCentralGoogle ScholarRizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.CrossRefPubMedGoogle ScholarBonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.Google ScholarMantovani A, Allavena P, Sica A, Balkwill F. Cancer related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle ScholarGriennikov SI, Greten FR, Karin M. immunity inflammation and cancer. Cell. 2010;140(6):883–99.CrossRefGoogle ScholarFiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020 6.CrossRefPubMedGoogle ScholarTak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7 11.CrossRefPubMedPubMedCentralGoogle ScholarSchmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47(2):147 55.CrossRefPubMedGoogle ScholarAbedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;2(5):443–63.CrossRefPubMedPubMedCentralGoogle ScholarWahli W, et al. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23(7):351–63.Google ScholarRogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah
SM. Docosahexaenoic acid alters epidermal growth factor receptor related
signaling by disrupting its lipid raft association. Carcinogenesis.
2010;31(9):1523–30.CrossRefPubMedGoogle
Scholar
Karmali RA, Reichel P, Cohen LA, Terano T, Hirai A, Tamura Y, et al.
The effects of dietary omega-3 fatty acids on the DU-145 transplantable human
prostatic tumor. Anticancer Res. 1987;7:1173–80.PubMedGoogle
Scholar
Galli C, Calder PC. Effects of fat and fatty acids intake on
inflammatory and immune responses. A critical review. Ann Nutr Metab.
2009;55:123–39.CrossRefPubMedGoogle
Scholar
Fradet V, Cheng I, Casey G, Witte JS. Dietary omega3 fatty acids,
cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin
Cancer Res. 2009;15(7):2559–66.CrossRefPubMedPubMedCentralGoogle
Scholar
Wang D, DuBois RN. The role of the PGE2–aromatase pathway in
obesity-associated breast inflammation. Cancer Discov. 2012;2(4):308–10.CrossRefPubMedGoogle
Scholar
Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS.
Molecular mechanisms underlying chemopreventive activities of anti-inflammatory
phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB
activation. Mutat Res Fundam Mol Mech Mutagen. 2001;480–481:243–68.Google
Scholar
Brodie MH, Lu Q, Long BJ, Fulton A, Chen T, Macpherson N, et al.
Aromatase and COX-2 expression in human breast cancers. J Steroid Biochem Mol
Biol. 2001;79(1–5):41–7.CrossRefPubMedGoogle
Scholar
Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE,
Robertson FM. Correlation of aromatase and cyclooxygenase gene expression in
human breast cancer specimens. Cancer Lett. 1999;140(1–2):27–35.CrossRefPubMedGoogle
Scholar
Bhat H. Estrogen’s role in cancer. Columbia Univ Health Sci.
2003;2(10).Google
Scholar
Liu J, Ma DWL. The Role of n-3 polyunsaturated fatty acids in the
prevention and treatment of breast cancer. Nutrients. 2014;6(11):5184–223.Google
Scholar
Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of
inducible nitric oxide synthase and related proinflammatory genes by the
omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer
Res. 2003;63:972–9.PubMedGoogle
Scholar
Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D
in cancer prevention and treatment. Endocrinol Metab Clin. 2010;39:401–18.CrossRefGoogle
Scholar
Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI,
et al. Docosahexaenoic acid metabolome in neural tumors: identification of
cytotoxic intermediates. FASEB J. 2010;24(3):906–15.CrossRefPubMedPubMedCentralGoogle
Scholar
Narayanan NK, Narayanan BA, Reddy BS. A combination of
docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in
vitro and is associated with modulation of nuclear factor-kappaB, and steroid
hormone receptors. Int J Oncol. 2005;26(3):785–92.PubMedGoogle
Scholar
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an
anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefPubMedGoogle
Scholar
Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph
TK, et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3
fatty acids. Nat Chem Biol. 2010;6:433–41.CrossRefPubMedPubMedCentralGoogle
Scholar
Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, et al.
GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and
insulin sensitizing effect. Cell. 2010;142(5):687–98.CrossRefPubMedPubMedCentralGoogle
Scholar
Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM, et
al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling
in human prostate cancer cells. J Pharmacol Exp Ther. 2015;352:380–94.CrossRefPubMedPubMedCentralGoogle
Scholar
Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and pro-resolving
lipid mediators. Annu Rev Pathol. 2008;3:279–312.CrossRefPubMedPubMedCentralGoogle
Scholar
Lee HJ, Park MK, Lee EJ, Lee CH. Resolvin D1 inhibits TGF-β1-induced
epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4
receptor/formyl peptide receptor 2 and GPR32. Int J Biochem Cell Biol.
2013;45(12):2801–7.Google
Scholar
Hutchinson JM, Volpato M, Loadman P, Nicolaou A, Hull M. Neoplasia
and cancer pathogenesis PWE-163 Chemr23 and BLT1 receptor expression in
colorectal cancer. Gut. 2013;62:A196–7.CrossRefGoogle
Scholar
Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty
acids for the treatment and prevention of colorectal cancer. Gut.
2012;61(1):135–49.CrossRefPubMedGoogle
Scholar
Calder PC, Yaqoob P. Lipid rafts—composition, characterization, and
controversies. J Nutr. 2007;137(3):545–7 (American Society for Nutrition).PubMedGoogle
Scholar
Anchisi L, Dessi S, Pani A, Mandas A. Cholesterol homeostasis: a key
to prevent or slow down neurodegeneration. Frontiers. 2012;3 (Article 486).Google
Scholar
Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B.
Docosahexaenoic acid intake decreases proliferation, increases apoptosis and
decreases the invasive potential of the human breast carcinoma cell line
MDA-MB-231. Int J Oncol. 2010;36:737–42.CrossRefPubMedGoogle
Scholar
Hawk ET, Viner JL, Dannenberg A, DuBois RN. COX-2 in cancer—a player
that’s defining the rules. J Natl Cancer Inst. 2002;94:545–6.CrossRefPubMedGoogle
Scholar
McCormick DL, Rao KV, Steele VE, Lubet RA, Kelloff GJ, Bosland MC.
Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer
Res. 1999;59:521–4.PubMedGoogle
Scholar
Rao KV, Johnson WD, Bosland MC, Lubet RA, Steele VE, Kelloff GJ, et
al. Chemoprevention of rat prostate carcinogenesis by early and delayed
administration of dehydroepiandrosterone. Cancer Res. 1999;59:3084–9 (1999).PubMedGoogle
Scholar
Swamy MV, Cooma I, Patlolla JM, Simi B, Reddy BS, Rao CV. Modulation
of cyclooxygenase-2 activities by the combined action of celecoxib and
decosahexaenoic acid: novel strategies for colon cancer prevention and
treatment. Mol Cancer Ther. 2004;3:215–21.PubMedGoogle
Scholar
Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, et al.
Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through
activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer.
2005;117:340–8.CrossRefPubMedGoogle
Scholar
Flock MR, Harris WS, Kris-Etherton PM. Long-chain omega-3 fatty
acids: time to establish a dietary reference intake. Nutr Rev.
2013;71(10):692–707.CrossRefPubMedGoogle
Scholar
Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid
composition and decrease epidermal growth factor receptor levels in lipid rafts
of human breast cancer cells. J Nutr. 2007;548–53.Google
Scholar
Corsetto PA, GigliolaMontorfano SZ, Jovenitti IE, Cremona A, Berra
B, et al. Effects of n-3 PUFAs on breast cancer cells through their
incorporation in plasma membrane. Lipids Health Dis. 2011;10:73.CrossRefPubMedPubMedCentralGoogle
Scholar
Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT. Docosahexaenoic
acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen
species formation and caspase 8 activation. PLoS One. 2010;5(4):e10296.Google
Scholar
Mobraten K, Haug TM, Kleiveland CR, Lea T. Omega-3 and omega-6 PUFAs
induce the same GPR120-mediated signalling events, but with different kinetics
and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101.CrossRefPubMedPubMedCentralGoogle
Scholar
Rahman MM, Veigas M, Williams PJ, Fernandes G. DHA is a more potent
inhibitor of breast cancer metastasis to bone and related osteolysis than EPA.
Breast Cancer Res Treat. 2013;141(3). doi: 10.1007/s10549-013-2703-y.Calviello
G, Palozza P, Di Nicuolo F, Maggiano N, Bartoli GM. n–3 PUFA dietary
supplementation inhibits proliferation and store-operated calcium influx in
thymoma cells growing in Balb/c mice. J Lipid Res. 2000;41:182–8.PubMedGoogle
Scholar
Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R.
Overexpression and hyperactivity of breast cancer-associated fatty acid
synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty
acid-induced suppression in lipogenic tissues but it is selectively inhibited
by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel
mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol.
2004;24(6):1369–83.PubMedGoogle
Scholar
Elaine Hardman W. Omega-3 fatty acids to augment cancer therapy.
american society for nutritional sciences. Int Res Conf Food Nutr Cancer.
2002;132:3508S–12S.Google
Scholar
Baracos VE, Mazurak VC, Ma DWL. n-3 polyunsaturated fatty acids
throughout the cancer trajectory: influence on disease incidence, progression,
response to therapy and cancer-associated cachexia. Nutr Res Rev.
2004;17:177–92.CrossRefPubMedGoogle
Scholar
Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene.
2008;27(50):6398–406.CrossRefPubMedGoogle
Scholar
Spencer L, Mann C, Metcalfe M, Webb MB, Pollard C, Spencer D, et al.
The effect of omega-3 FAs on tumour angiogenesis and their therapeutic
potential. Eur J Cancer. 2009;45:2077–86.CrossRefPubMedGoogle
Scholar
Vakkila L. Inflammation and necrosis promote tumor growth. Nat Rev
Immunol. 2004;4:641–8.CrossRefPubMedGoogle
Scholar
Tang D, Kang R, Zeh HJ III, Lotze MT. High-mobility Group box 1
[HMGB1] and cancer. Biochim Biophys Acta. 2010;1799(1–2):131.Google
Scholar
Joyce JA, Pollard JW, et al. Microenvironmental regulation of
metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefPubMedGoogle
Scholar
Zhang G, Panigrahy D, Mahakiane LM, Yang J, Liu J-Y, Leea KSS, et
al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor
growth, and metastasis. PNAS. 2013;110(16):6530–35.Google
Scholar
Calviello G, Serini S. Dietary omega-3 polyunsaturated fatty acids
and cancer. Diet Cancer Ser. 2010;1.Google
Scholar
Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on
the progression of metastases after the surgical excision of human breast
cancer cell solid tumors growing in nude mice. Clin Cancer Res. 1996;2:1751–6.PubMedGoogle
Scholar
Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti
F. Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the
treatment of cancer. BioMed Res Int. 2013;11 pages (ArticleID310186).Google
Scholar
Li CC, Hou YC, Yeh CL, Yeh SL. Effects of eicosapentaenoic acid and
docosahexaenoic acid on prostate cancer cell migration and invasion induced by
tumor-associated macrophages. PLoS ONE. 2014;9(6):e99630.CrossRefPubMedPubMedCentralGoogle
Scholar
Cunningham-Rundles S. Is the fatty acid composition of immune cells
the key to normal variations in human immune response? Am J Clin Nutr. 2003;77(5):1096–7.PubMedGoogle
Scholar
Mantovani A. Macrophages, neutrophils, and cancer: a double edged
sword. New J Sci. 2014;2014:14 pages (Article ID 271940).Google
Scholar
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon
S. Tumor associated macrophages and neutrophils in cancer. Immunobiology; 2013.Google
Scholar
Menendez JA, Lupu R, Colomer R. Exogenous supplementation with
omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22, 6n-3)
synergistically enhances taxane cytotoxicity and downregulates Her-2/neu
(c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev.
2005;14:263–70.CrossRefPubMedGoogle
Scholar
Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, et al.
Disruption of p53 in human cancer cells alters the responses to therapeutic
agents. J Clin Invest. 1999;104:263–9.CrossRefPubMedPubMedCentralGoogle
Scholar
Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic
trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a
hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.PubMedGoogle
Scholar
Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, et al. In vitro
studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the
treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis
with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML
proteins. Blood. 1996;88:1052–61.PubMedGoogle
Scholar
Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of
arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia
(APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood.
1997;89:3345–53.PubMedGoogle
Scholar
Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A,
Maggiano N. Docosahexaenoic acid enhances the susceptibility of human
colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol.
2005;55:12–20.CrossRefPubMedGoogle
Scholar
Zhou Z, Zhang L, Mu Q, Lou Y, Gong Z, Shi Y, et al. The effect of
combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA
expression of apoptosisrelated genes, including the novel gene BCL2L12, in
gastric cancer cells. In Vitro Cell Dev Biol Anim. 2009;45:69–74.CrossRefGoogle
Scholar
Guffy MM, North JA, Burns CP. Effect of cellular fatty acid
alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells.
Cancer Res. 1984;44:1863–6.PubMedGoogle
Scholar
Zijlstra JG, de Vries EG, Muskiet FA, Martini IA, Timmer-Bosscha H,
Mulder NH. Influence of docosahexaenoic acid in vitro on intracellular
adriamycin concentration in lymphocytes and human adriamycin-sensitive and
-resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor
cell lines. Int J Cancer. 1987;40:850–6.CrossRefPubMedGoogle
Scholar
Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P. Can tumour
cell drug resistance be reversed by essential fatty acids and their
metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.CrossRefPubMedGoogle
Scholar
Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J, Maheo K.
Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to
anthracyclines through loss of glutathione peroxidase (GPx1) response. Free
Radic Biol Med. 2008;44(7):1483–91.CrossRefPubMedGoogle
Scholar
Gelsomino G, et al. Omega 3 fatty acids chemosensitize multidrug
resistant colon cancer cells by down-regulating cholesterol synthesis and
altering detergent resistant membranes composition. Mol Cancer. 2013;12:137.CrossRefPubMedPubMedCentralGoogle
Scholar
Maheo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, et
al. Differential sensitization of cancer cells to doxorubicin by DHA: a role
for lipoperoxidation. Free Radic Biol Med. 2005;39:742–51.CrossRefPubMedGoogle
Scholar
Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of
cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells.
Br J Cancer. 1997;75:1111–8.CrossRefPubMedPubMedCentralGoogle
Scholar
Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J
Natl Cancer Inst. 1998;90:1529–36.CrossRefPubMedGoogle
Scholar
Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, et
al. Cyclo-oxygenase 2, a pharmacological target for the prevention of cancer.
Lancet Oncol. 2001;2:544–51.CrossRefPubMedGoogle
Scholar
Saw CL, Huang Y, Kong AN. Synergistic antiinflammatory effects of
low doses of curcumin in combination with polyunsaturated fatty acids:
docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol.
2010;79:421–30.CrossRefPubMedGoogle
Scholar
Elaine Hardman W, Reddy Avula CP, Fernandes G, Cameron IL. Three
percent dietary fish oil concentrate increased efficacy of doxorubicin against
MDA-MB 231 breast cancer xenografts. Clin Cancer Res. 2001;7:2041.Google
Scholar
MacLennan MB, Clarke SE, Perez K, Wood GA, Muller WJ, Kang JX, et
al. Mammary tumor development is directly inhibited by lifelong n-3
polyunsaturated fatty acids. J Nutr Biochem. 2013;24(1):388–95.Google
Scholar
 
Bron: https://link.springer.com/chapter/10.1007/978-3-319-40458-5_12  

Geef een reactie